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Rapid shear flows of dry granular masses down
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This paper presents a two-dimensional depth-integrated theory for the gravity-driven
free-surface flow of a granular avalanche over an arbitrarily but gently curved and
twisted topography which is an important extension of the original Savage & Hutter
theory. In contrast to previous extensions the present coordinate system is based on a
reference curve with curvature and torsion. Its derivation was necessary because real
avalanches are often guided by rather curved and twisted valleys or more general
slopes. The aim is to gain fundamental insight into the effects of non-uniform curvature
and torsion, using an orthogonal coordinate system that rotates with torsion, and
find an analytic description of flow avalanches. We present a set of model equations
which comprises nonlinear hyperbolic partial differential equations for the space and
time evolution of the granular pile height and the depth-averaged streamwise velocity
distribution of a finite mass of granulates. The emerging theory is believed to be
capable of predicting the flow of dense granular materials over moderately curved
and twisted channels of general type.

1. General introduction
Avalanches can physically be characterized as multiphase gravity flows, which

consist of randomly dispersed interacting phases, whose properties change with respect
to both time and space (Lang & Dent 1980, 1982). Thus, an avalanche can be des-
cribed as a transient, three-dimensional gravity-driven free-surface motion of a mass
system made up of an assemblage of granular fragments initiated by an instability
of a granular layer and flowing down to the run-out zone on an arbitrarily steep
topography with any surface resistance. In this sense, an exact analysis of an avalanche
is perhaps an unattainable goal although the last few years have witnessed increased
efforts devoted to the physical understanding of avalanche formation and motion in
complex topography.

The study of granular avalanches is very important both in natural environments
and in industrial flows. Rockfalls, landslides, debris and snow-slab avalanches are
some examples of granular avalanches in geophysical contexts. Similarly, flows in
silos, hoppers, rotating drums and slag heaps are examples in industrial applications.
Although there may be a great difference in length scale between the geophysical
and industrial avalanches the dominant physical mechanisms that drive the flow are
similar. Because of their practical importance, granular flows and avalanches have
been studied by many researchers from different disciplines, who each present models
(see, e.g., Jenkins & Savage 1983; Jenkins & Richman 1985; Hutter & Rajagopal
1994; Herrmann & Luding 1998; Pudasaini & Mohring 2002).
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1.1. A continuum mechanical theory

It is probably fair to state that Savage & Hutter (1989, 1991), developed the first
continuum mechanical theory capable of describing the evolving geometry of a
finite mass of a granular material and the associated velocity distribution as an
avalanche slides down inclined surfaces. Several simplifying, but nevertheless realistic,
assumptions were made, as follows. The moving and deforming granular mass is
supposed to be cohesionless, volume preserving and obeys a Mohr–Coulomb yield
criterion both inside the mass and at the sliding basal surface. The geometry of the
avalanching mass is shallow in the sense that the typical avalanche thickness is small
in comparison to the extent parallel to the sliding surface. The motion consists of
shearing within the deforming mass and sliding along the basal surface. However, on
the basis of observations the shearing deformation commonly takes place within a
very small basal boundary layer, so that it is justified to collapse this layer to zero
thickness and to combine the sliding and shearing velocity into a single sliding law
with somewhat larger modelled sliding velocity. The theory has been generalized to
higher dimensions and was tested against laboratory experiments. Good agreements
were obtained between the theoretical predictions and experiments, proving it to be
adequate as one of the leading mathematical models for an avalanche (Hutter & Koch
1991; Greve & Hutter 1993; Hutter et al. 1993; Greve, Koch & Hutter 1994; Koch,
Greve & Hutter 1994; Gray, Wieland & Hutter 1999; Wieland, Gray & Hutter 1999;
Gray 2001; Pudasaini, Eckart & Hutter 2003a; Pudasaini, Hutter & Eckart 2003b).

1.2. Present model

In the present contribution we have extended the Savage–Hutter (SH) theory to rapid
shear flows of granular avalanches in a non-uniformly curved and twisted channel.
An orthogonal coordinate system along a ‘generic master curve’ can be introduced
and the (SH) equations can be explicitly derived in this frame of reference. We are,
thus, able to study the simultaneous effects of curvature and torsion on the flow
avalanche in channels which could not be investigated before. This makes the present
model applicable to realistic avalanche motions down arbitrary guiding topographies
such as valleys and channelised corries. In fact, Geographic Information Systems
(GIS) applied to mountainous avalanche-prone regions can be applied to this model.
This paper provides the theoretical foundation for an application close to realistic
situations and tuned to practical use.

2. Field equations
The avalanche is assumed to be an incompressible material with constant bulk

density �0. Then the mass and momentum conservation laws reduce to

∇ · u = 0, �0

{
∂u
∂t

+ ∇ · (u ⊗ u)

}
= −∇ · p + �0 g, (2.1a, b)

where u is the velocity, ⊗ the tensor product, p the pressure tensor and g the gravita-
tional acceleration. The granular avalanche is assumed to satisfy a Mohr–Coulomb
yield criterion in which the internal shear stress S and the normal pressure N are
related by

|S| = N tan φ, (2.2)

where φ is the internal angle of friction. The conservation laws (2.1a) and (2.1b) are
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Figure 1. R(s) describes the reference curve C embedded in �3. s is the arclength, {T , N, B}
is the moving orthonormal unit triad following the curve. (r, θ ) are polar coordinates spanning
the plane of circle S with radius r̃ normal to the axis of the master curve C. The origin of the
azimuthal angle, θ , in this plane is arbitrary, but measured from the unit vector N∗ which is
rotated from N by a phase (ϕ(s) +ϕ0) for s ∈ [s0, ∞), s0 ∈ [0, ∞) and θ ∈ (0, 2π]. Also ϕ0 is an
arbitrary constant and P is any point in space.

complemented by kinematic boundary conditions

∂F s

∂t
+ us · ∇F s = 0,

∂F b

∂t
+ ub · ∇F b = 0, (2.3a, b)

where the superscripts s and b indicate that a variable is evaluated at the surface,
F s(x, t) = 0, and the base, F b(x, t) = 0, respectively. The free surface of the avalanche
is traction free while the base satisfies a Coulomb dry-friction sliding law. That is,

psns = 0, pbnb − nb(nb · pbnb) = (ub/|ub|)(nb · pbnb) tan δ, (2.4a, b)

where ns and nb are outward normals, and δ is the basal angle of friction.

3. Coordinate system
Consider an avalanche-prone landscape and a subregion of it where the topography

allows the identification of an avalanche track. A single curve, following the landscape
topography (e.g. the talweg of the valley) is selected as a master (reference) curve
C from which the track topography will be modelled. Let this three-dimensional
curve be smooth and be given by R(x, y, z), where x, y and z are the Cartesian
coordinates. A curvilinear coordinate system is constructed (see, e.g., Germano 1982,
1989; Zabielski & Mestel 1998a, b) by considering this spatial curve to be described
by the position vector R(s), where s is the arclength. At any point of the curve
we have the orthonormal triad {T , N, B} which, respectively, comprises the tangent,
normal and binormal unit vectors, also expressible as functions of s. The vector pair
{N, B} spans a plane perpendicular to C. Any vector X in the three-dimensional
space can be expressed as

X := X(s, r, θ) = R(s) + r cos(θ + ϕ(s) + ϕ0)N(s) + r sin(θ + ϕ(s) + ϕ0)B(s). (3.1)

Here, (r, θ ) are polar coordinates spanning the plane normal to the axis of C in figure 1.
The origin of the azimuthal angle, θ , in this plane is arbitrary, but measured from
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the unit vector N∗ which is rotated from N by a phase (ϕ(s) + ϕ0). Also, ϕ0 is an
arbitrary constant and

ϕ(s) = −
∫ s

s0

τ (s ′) ds ′. (3.2)

Hence the torsion, τ (s), enters into the equations through the auxiliary function
ϕ =ϕ(s). From differential geometry we recall the following results:

T (s) =
dR(s)

ds
, N(s) =

1

κ

dT (s)

ds
, B(s) = T (s) × N(s), (3.3)

where κ is the curvature of the curve C. Curvature and torsion can be computed
from R = R(x, y, z) and are expressible as functions of the arclength s: κ = κ(s) and
τ = τ (s). The Serret–Frénet formula provides a connection between the curvature and
torsion and the changes of T , N, B along s as follows:

dT
ds

= κ N,
dN
ds

= τ B − κT ,
dB
ds

= −τ N. (3.4)

One can easily show that the metric for the chosen coordinate system is given by

dX · dX = [1 − κ(s)r cos(θ + ϕ(s) + ϕ0)]
2(ds)2 + (dr)2 + (r dθ )2. (3.5)

This corroborates the orthogonality of (3.1) and (3.3). This system of coordinates
is well known in studies on hydromagnetic equilibria, plasma confinement in closed
magnetic systems, the treatment of the Navier–Stokes equations for an incompressible
viscous fluid and extension of the Dean equations to helical pipe flow (Dean 1927,
1928; Mercier 1963; Solove’v & Shafranov 1970; Germano 1982, 1989; Gammack &
Hydon 2001).

For ease of notation the identities (x1, x2, x3) = (s, θ, r) will be made. The tangent
vectors to the coordinate lines, gi = ∂X/∂xi , are given by

g1 = (1 − κrη)T (s), g2 = −rζ N(s) + rηB(s), g3 = ηN(s) + ζ B(s), (3.6)

η = cos(θ + ϕ(s) + ϕ0), ζ = sin(θ + ϕ(s) + ϕ0). (3.7)

The covariant metric coefficients, defined as gij = gi · gj and the associated contra-

variant metric (gij ) = (gij )
−1 are found to be

(gij ) =


(1 − κrη)2 0 0

0 r2 0

0 0 1


 , (gij ) =


1/(1 − κrη)2 0 0

0 1/r2 0

0 0 1


 . (3.8)

The covariant unit vectors are defined as g∗
i = gi/

√
g(ii). The Christoffel symbols of the

second kind are needed in order to transfer the equations of motion to the curvilinear
coordinates. They are defined as (see, e.g., Klingbeil 1966)

Γ k
lm = 1

2
g(kk)(gmk,l + gkl,m − glm,k), (3.9)

in which the Einstein summation convention is dropped for the bracketed indices.
For the curvilinear coordinates (3.8) the components of the Christoffel symbol are

Γ 1 = −ψ


 Λr −κrζ κη

−κrζ 0 0

κη 0 0


 , Γ 2 =

1

r


−κζ/ψ 0 0

0 0 1

0 1 0


 ,

Γ 3 =


κη/ψ 0 0

0 −r 0

0 0 0


 ,




(3.10)
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where

Λ = κ ′η + κτζ, ψ = 1/(1 − κrη), κ ′ = ∂κ/∂s. (3.11)

Further, the vector differential operator ∇ is defined as ∇ = gk∂/∂xk, and the gradient
of a given scalar field F can be expressed as

∇F = ψ
∂F

∂s
g∗

1 +
1

r

∂F

∂θ
g∗

2 +
∂F

∂r
g∗

3. (3.12)

The divergence of a vector field u = ui gi and a symmetric second-order pressure
tensor p = pij gi ⊗ gj , respectively, are expressed as

∇ · u =

(
gk ∂

∂xk

)
· (ui gi) = ui

, i + uiΓ k
ik, Γ k

ik = gk · gi,k, (3.13)

∇ · p =

(
gk ∂

∂xk

)
· (pij gi ⊗ gj ) =

{
pki

,k + pjiΓ k
jk + pkjΓ i

jk

}√
g(ii) g∗

i . (3.14)

For notational brevity and to make the present theory compatible with previous
theories we define the following new variables, and from now on all derivations use
those:

(x, y, z) := (s, rθ, r). (3.15)

First we take the differentials with respect to these variables and then we again shift
the z-coordinate by an amount zT , i.e. we replace z by z+ zT , where zT is the distance
between the master curve and the talweg. Therefore, (x, y, z) are, from now on, not
Cartesian components, but rather the coordinates of the curved and twisted channel,
and the origin of this new coordinate system lies in the talweg. Furthermore, the
manifold z =const. forms a curved reference surface and the new z is the coordinate
in the direction normal to it. We refer to the x-, y- and z-coordinates as downslope,
cross-slope and normal directions, respectively. In the following computations we write

Z = z + zT . (3.16)

With physical components ui∗ = ui√g(ii) and pij∗ = pij (
√

g(ii)
√

g(jj )), (3.13) and (3.14)
in curvilinear coordinates, respectively, are

∇ · u =
∂

∂x
(ψu1∗) +

∂u2∗

∂y
+

∂u3∗

∂z
− ψ2ΛZu1∗ + ψκζu2∗ −

(
ψκη − 1

Z

)
u3∗, (3.17)

∇ · p =

[
∂

∂x
(ψp11∗) +

∂p12∗

∂y
+

∂p13∗

∂z
− ψ2ΛZp11∗ + 2ψκζp12∗ − 2ψκηp13∗ +

1

Zp13∗
]

g∗
1

+

[
∂

∂x
(ψp12∗) +

∂p22∗

∂y
+

∂p23∗

∂z
− ψκζp11∗ − ψ2ΛZp12∗ + ψκζp22∗

−
(

ψκη − 2

Z

)
p23∗

]
g∗

2 +

[
∂

∂x
(ψp13∗) +

∂p23∗

∂y
+

∂p33∗

∂z
+ ψκηp11∗

− 1

Zp22∗ − ψ2ΛZp13∗ + ψκζp23∗−
(

ψκη − 1

Z

)
p33∗

]
g∗

3. (3.18)

4. Non-dimensional equations
The physical components of u are defined as u, v and w. Similarly, pxx, pyy, pzz, pxy ,

pxz and pyz are, now and henceforth, physical components of p. Also, from now on,
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we simply write gi for g∗
i , so that u = ugx + vgy + wgz defines physical components.

The physical variables are non-dimensionalized by using the scalings

(x, y, z, F s, F b, t) =
(
Lx̂, Lŷ, H ẑ, HF̂ s, HF̂ b, (L/g)1/2 t̂

)
,

(u, v, w) = (gL)1/2(û, v̂, εŵ),

(pxx, pyy, pzz) = �0gH (p̂xx, p̂yy, p̂zz),

(pxy, pxz, pyz) = �0gHµ(p̂xy, p̂xz, p̂yz),

(gx, gy, gz) = g(ĝx, ĝy, ĝz),

(κ, τ ) = (κ̂/R, τ̂ /Rτ ),




(4.1)

where the hats represent non-dimensional variables. The scalings (4.1) assume that
the avalanche has a typical length L tangential to the reference surface and a typical
thickness H normal to it. Furthermore, R and Rτ are, respectively, a typical radius of
curvature and torsion of the reference geometry. Assuming a granular static balance,
the typical normal pressures at the base of the avalanche are of the order �0gH ,†
and the Coulomb dry-friction law suggests that the basal shear stresses are of the
order �0gH tan δ0, where δ0 is a typical basal angle of friction. Also notice that gx, gy

and gz in these equations are dimensional physical components of the gravitational
acceleration along the x-, y- and z-coordinates, respectively. Finally, the curvature κ

and torsion τ are assumed to be of order 1/R and 1/Rτ , respectively. These scalings
introduce the following non-dimensional parameters:

ε = H/L, λ = L/R, λτ = L/Rτ , µ = tan δ0, (4.2)

where ε is the aspect ratio of the avalanche, λ and λτ are the measures of the curvature
and torsion of the reference geometry with respect to the length of the avalanche and
µ is the coefficient of friction of the granular material associated with the base.

4.1. Balance equations

Applying the scalings (4.1) and (4.2), it follows that the non-dimensional curvilinear
form of the mass balance equation (3.17) is

∂

∂x
(ψu) +

∂v

∂y
+

∂w

∂z
− ελψ2ΛZu + λψκζv − (ελψκη − 1/Z)w = 0, (4.3)

where the hats are now and henceforth dropped and

ψ = 1/(1 − ελκηZ), θ = y/(εzT ), Λ = (κ ′η + λτ κτζ ). (4.4a–c)

The momentum balance equation (2.1b) can be written in curvilinear coordinates
by using relation (3.18) to transform the tensor u ⊗ u and the divergence of the
pressure p. Let gx , gy and gz be the non-dimensional physical components of the
gravitational acceleration along the x-, y- and z-coordinates, respectively. They can
be determined as known functions of curvature and torsion referred to the moving
triad of the given master curve (or the talweg). Their derivation is given in the
Appendix. It follows that the non-dimensional curvilinear momentum components

† This scaling for the normal pressure tacitly assumes a ‘hydrostatic nature’ of the pressure in
a granular heap. This is in fact untypical for granular systems for which the pressure is not the
overburden weight but saturates after a certain depth. In hoppers etc. the overburden pressure mg
over the whole base (A, say) must equal

∫
p dA= mg =

∫
�0gH dA. So this scaling will always be

true, the only exception being if the avalanche is spreading out very rapidly.
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in the downslope, cross-slope and normal directions to the reference surface are,
respectively,

∂u

∂t
+

∂

∂x
(ψu2) +

∂

∂y
(uv) +

∂

∂z
(uw) − ελψ2ΛZu2 + 2λψκζuv − 2ελψκηuw +

1

Zuw

= −
{

ε
∂

∂x
(ψpxx) + εµ

∂

∂y
(pxy) + µ

∂

∂z
(pxz) − ε2λψ2ΛZpxx

+ 2ελµψκ(ζpxy − ηpxz) +
µ

Zpxz

}
+ gx, (4.5)

∂v

∂t
+

∂

∂x
(ψuv) +

∂

∂y
(v2) +

∂

∂z
(vw) − λψκζ (u2 − v2) − ελψ2ΛZuv −

(
ελψκη − 2

Z

)
vw

= −
{

εµ
∂

∂x
(ψpxy) + ε

∂

∂y
(pyy) + µ

∂

∂z
(pyz) − ελψκζP x

y

− ε2λµψ2ΛZpxy − µ

(
ελψκη − 2

Z

)
pyz

}
+ gy, (4.6)

ε

{
∂w

∂t
+

∂(ψuw)

∂x
+

∂(vw)

∂y
+

∂w2

∂z

}
+ λψκηu2 − v2

εZ

− ελ(εψ2ΛZu − ψκζv)w −
(

ε2λψκη − ε

Z

)
w2

= −
{

εµ
∂

∂x
(ψpxz) + εµ

∂

∂y
(pyz) +

∂

∂z
(pzz) + ελψκηP x

z

− 1

ZP y
z − ε2λµψ2ΛZpxz + ελµψκζpyz

}
+ gz, (4.7)

where P x
y =(pxx − pyy), P x

z =(pxx − pzz), P y
z = (pyy − pzz).

4.2. Kinematic conditions

The basal topography, F b = 0, and the free surface of the avalanche, F s = 0, are
defined by their respective heights above the curvilinear reference, see figure 2,

F b ≡ −z + b(x, y, t) = 0, F s ≡ z − s(x, y, t) = 0. (4.8a, b)

The kinematic surface equations in dimensional form are

∂F b

∂t
+ ub · ∇F b = 0,

∂F s

∂t
+ us · ∇F s = 0. (4.9)

It is emphasized that ub here is the material velocity of particles at the base, but then
processes of bed erosion or sedimentation are excluded. In view of this omission, we
deduce from (3.12), (4.1), (4.2), (4.4), (4.8) and (4.9) the following non-dimensional
curvilinear kinematic conditions for the basal, z = b(x, y, t), and free, z = s(x, y, t),
surfaces:

∂b

∂t
+ ψbub ∂b

∂x
+ vb ∂b

∂y
− wb = 0,

∂s

∂t
+ ψsus ∂s

∂x
+ vs ∂s

∂y
− ws = 0. (4.10)

4.3. Traction-free condition at the free surface

From the definition (3.12) of the gradient of a scalar field and (4.8b), the traction-
free condition (2.4a) is (pij/

√
g(jj ))(∂F s/∂xj )gi =0. Hence, the traction-free boundary
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Figure 2. For a given value of s = x, the avalanche domain in the lateral direction occupies a
region in the plane of the circle ST ⊥ C distant from the centre of the moving triad {T , N, B}.
The concentric and coplanar circles (with the centre at the master curve and radius rT , rR ,
and rL), ST , SR , and SL, respectively, pass through the talweg (T ) and the left (L) and right
(R) marginal points of the avalanche with its basal topography in the lateral direction. The
basal topography Fb = 0 and the free surface F s = 0 of the avalanche in this plane section are
shown. The depth of the avalanche in this section is represented by a height function h(x, y, t)
and is measured in the radial direction. Also shown, for instance, is the distance d of the
avalanche from the centreline to the circle SL.

condition at the free surface of the avalanche has downslope, cross-slope and normal
(dimensionless) physical components as follows:

−εψsps
xx

∂s

∂x
− εµps

xy

∂s

∂y
+ µps

xz = 0, (4.11a)

−εµψsps
yx

∂s

∂x
− εps

yy

∂s

∂y
+ µps

yz = 0, (4.11b)

−εµψsps
zx

∂s

∂x
− εµps

zy

∂s

∂y
+ ps

zz = 0. (4.11c)

4.4. Coulomb sliding law at the base

From (3.12), (4.1), (4.2) and (4.4), we obtain the non-dimensional form of the gradient
of the basal surface as follows:

∇F b = εψb ∂b

∂x
gx + ε

∂b

∂y
gy − gz. (4.12)

The Coulomb sliding law (2.4b) implies the relation pbnb = (nb · pbnb){(ub/|ub|) tan δ

+ nb}. It follows from this and (4.11) and (4.12) that the downslope, cross-slope and
normal sliding components, respectively, are

εψbpb
xx

∂b

∂x
+ εµpb

xy

∂b

∂y
− µpb

xz = (nb · pbnb)

(
∆b

ub

|ub| tan δ + εψb ∂b

∂x

)
, (4.13a)
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εµψbpb
yx

∂b

∂x
+ εpb

yy

∂b

∂y
− µpb

yz = (nb · pbnb)

(
∆b

vb

|ub| tan δ + ε
∂b

∂y

)
, (4.13b)

εµψbpb
zx

∂b

∂x
+ εµpb

zy

∂b

∂y
− pb

zz = (nb · pbnb)

(
∆b

εwb

|ub| tan δ − 1

)
, (4.13c)

where |u| =(u2 + v2 + ε2w2)1/2, the basal unit normal vector nb is given by ∆bnb = ∇F b,
∆b := |∇F b|, and the associated normalization factor is

∆b = {1 + ε2(ψb)2(∂b/∂x)2 + ε2(∂b/∂y)2}1/2. (4.14)

Notice that this dry-friction law could be extended to incorporate a velocity-dependent
contribution, but a large number of laboratory experiments have shown an alteration
of the sliding law to be unnecessary.

5. Depth integration
The distance between the free surface, s = s(x, y, t), and the basal topography,

b = b(x, y, t) defines the thickness, or depth, of the avalanche

h(x, y, t) = s(x, y, t) − b(x, y, t), (5.1)

measured along the normal direction of the reference surface. A crucial step in
deriving the equations of motion for shallow geometry of the granular material
is integrating the mass and the momentum-balance equations over the thickness.
In order to perform this step, it is useful to define the mean value of a function
f = f (x, y, z, t) over the avalanche thickness

f̄ (x, y, t) =
1

h

∫ s

b

f (x, y, z, t) dz, (5.2)

where the overbar is a shorthand notation for the depth-integrated value divided
by the depth. Next, we apply the Leibniz rule to change the order of integration
and differentiation, where the square bracket defines the difference of the enclosed
function at the two limits of integration, [f ]ba = f b − f a.

On using the Leibniz rule the mass balance (4.3) is integrated through the avalanche
depth. This yields∫ s

b

{
∂

∂x
(ψu) +

∂v

∂y
+

∂w

∂z
− ελψ2ΛZu + λψκζv −

(
ελψκη − 1

Z

)
w

}
dz

=
∂

∂x
(hψu) +

∂

∂y
(hv) −

[
ψu

∂z

∂x
+ v

∂z

∂y
− w

]s

b

− ελhψ2ΛZu+ λhψκζv − h

(
ελψκη − 1

Z

)
w.

From (4.10) and (5.1) it therefore follows that the depth-integrated form of the mass
balance (4.3) takes the form

∂h

∂t
+

∂

∂x
(hψu) +

∂

∂y
(hv) − ελhψ2ΛZu + λhψκζv − h

(
ελψκη − 1

Z

)
w = 0. (5.3)

Depth-integration of the momentum balance equations (4.5)–(4.7) is performed in a
number of steps. Integrating the first four terms of the left-hand side of (4.5) (the
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downslope acceleration) and using the kinematic conditions (4.10), we have∫ s

b

{
∂u

∂t
+

∂

∂x
(ψu2) +

∂

∂y
(uv) +

∂

∂z
(uw)

}
dz

=
∂

∂t
(hu) +

∂

∂x
(hψu2) +

∂

∂y
(huv) −

[
u

(
∂z

∂t
+ ψu

∂z

∂x
+ v

∂z

∂y
− w

)]s

b

=
∂

∂t
(hu) +

∂

∂x
(hψu2) +

∂

∂y
(huv). (5.4)

Similarly, the first three terms of the right-hand side of (4.5), after integrating and
employing (4.11a) and (4.13a), reduce to

ε
∂

∂x
(hψpxx) + εµ

∂

∂y
(hpxy) + (nb · pbnb)

(
∆b

ub

|ub| tan δ + εψb ∂b

∂x

)
, (5.5)

where the Coulomb dry-friction law and the downslope component of the basal
normal pressure enter through the boundary conditions. In a similar fashion
we can derive corresponding expressions for the depth-integrated cross-slope and
normal components of the momentum balances. It then follows that the depth-
integrated downslope, cross-slope and normal components of the momentum balances,
respectively, are

∂

∂t
(hu)+

∂

∂x
(hψu2)+

∂

∂y
(huv) − ελhψ2ΛZu2 + 2λκhψζuv − 2ελκhψηuw + h

(
uw

Z

)

= −
(

∆b

ub

|ub| tan δ + εψb ∂b

∂x

)
(nb · pbnb) − ε

∂

∂x
(hψpxx ) − εµ

∂

∂y
(hpxy)

+ ε2λhψ2ΛZpxx − 2ελµκhψζpxy + 2ελµκhψηpxz − µh

(
pxz

Z

)
+ hgx, (5.6)

∂

∂t
(hv)+

∂

∂x
(hψuv)+

∂

∂y
(hv2)−λκhψζ (u2 −v2)−ελh(ψ2ΛZuv − κψηvw) + 2h

(
vw

Z

)

= −
(

∆b

vb

|ub| tan δ + ε
∂b

∂y

)
(nb · pbnb) − εµ

∂

∂x
(hψpxy) − ε

∂

∂y
(hpyy) + ελκhψζP x

y

+ ε2λµhψ2ΛZpxy + ελµκhψηpyz + 2µh

(
pyz

Z

)
+ hgy, (5.7)

ε

{
∂

∂t
(hw) +

∂

∂x
(hψuw) +

∂

∂y
(hvw)

}
+ λκhψηu2 − h

ε

(
v2

Z

)
− ε2λhψ2ΛZuw

+ ελκhψζvw − ε2λκhψηw2 + εh

(
w2

Z

)

= −
(

∆b

εwb

|ub| tan δ − 1

)
(nb · pbnb) − εµ

∂

∂x
(hψpxz) − εµ

∂

∂y
(hpyz)

− ελκhψ
(
ηP x

z + µζpyz

)
+ h

(
pyy

Z

)
+ ε2λµhψ2ΛZpxz − h

(
pzz

Z

)
+ hgz. (5.8)

The depth-integrated mass balance (5.3), and the downslope and cross-slope
momentum balances (5.6) and (5.7), form the basis of the granular flow equations.
The normal component, (5.8), will thereby serve as an auxiliary equation defining the
pressure.
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6. Ordering
Equations (5.3), (5.6)–(5.8) constitute four scalar field equations for h, u, v and w

as unknowns. However, they contain more than just these unknowns because many
‘correction terms’ arise which are thickness averages of product quantities of h, u, v

and w. The number of these unknown variables can be reduced by introducing a
further approximation that is based on the ordering of the various terms arising in
these equations. Such orders of magnitudes are now assumed for the parameters λ, λτ

and µ. Realistic avalanche lengths are generally larger than typical radii of curvature
and torsion of the topography. Of course, this is not always so, but 0< λ, λτ < 1 is
almost everywhere correct. Similarly δ0 as a typical friction angle is smaller than 45◦.
So 0 <µ< 1 must also hold. Since the aspect ratio is generally much smaller than
unity, ε � 1, such conditions are fulfilled for

λ = O(εα), λτ = O(εατ ), µ = O(εβ), (6.1)

where 0 < α, ατ , β < 1 are realistic for typical topography and coefficients of basal
friction. Therefore, the functions ψ and ∆b from (4.4a) and (4.14), respectively, can
be estimated by

ψ = 1 + O(ε1+α), ∆b = 1 + O(ε2). (6.2)

The down- and cross-slope components of the depth-averaged momentum balances
(5.6) and (5.7) must be approximated to leading and first order in the parameter ε

in order to obtain a realizable theory which includes some constitutive properties of
granular material. These equations contain a common term that is multiplied by the
factor (nb · pbnb). From the z (i.e. normal) component of the momentum balance (5.8),
it follows that

nb · pbnb = λκhψηu2 + hC − hgz + O(ε) = hC − hgz + O(εγ ),

C =

(
pzz

Z

)
−

(
pyy

Z

)
−

(
v2

εZ

)
, γ = min{α, ατ , β}.


 (6.3)

The z-component of the local momentum balance (4.7) also reduces to

∂

∂z
(pzz) =

1

Zpyy − 1

Zpzz +
v2

εZ + gz + O(εγ ).

Integrating this from z′ = z to z′ = s we obtain (with Z′ = z′ + zT )

pzz = −
∫ s

z

{
1

Z′ pyy − 1

Z′ pzz +
v2

εZ′ + gz

}
dz′ + O (εγ ) , (6.4)

from which it follows that

pb
zz = hC − hgz + O(εγ ). (6.5)

In the (SH) theory linear variability of the pressure with depth is assumed. This is
fulfilled if

∫ s

z
{pyy/Z′ − pzz/Z′ + v2/εZ′} dz′ =O(εγ ), so it follows from (6.4) that

pzz = −(s − z)gz + O(εγ ), pb
zz = −hgz + O(εγ ). (6.6a, b)

Since we are deriving depth-averaged model equations we must somehow eliminate
the effects of the normal component w of the velocity field and the normal coordinate
z from the balance equations. In typical avalanche flows the dominant deformation
takes place mainly in the downhill direction. It is therefore legitimate to assume that
pxz and pyz are of order ε and that their variation with z is negligible. With these
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assumptions, we have the following results:

(pxz/Z) = O(ε), (pyz/Z) = O(ε). (6.7)

Due to the depth-averaging and the Boussinesq assumption (see later, § 7), we may
also assume that (uw/Z), (vw/Z), (w/Z) are negligible. Moreover, since we consider
shallow geometry of the basal topography, for shallow curvature and torsion, we may
also consider λκζ to be negligible.

7. Closure property and velocity profile
The (SH) theory assumes that the downslope and cross-slope pressures vary linearly

with normal pressure through the avalanche depth. This is achieved to leading order
by the expression

pxx = Kb
x pzz + O(εγ ), pyy = Kb

y pzz + O(εγ ), (7.1)

Kb
x =

{
Kxact, ∂u/∂x > 0,

Kxpass, ∂u/∂x < 0,
Kb

y =




Kxact
yact

, ∂u/∂x > 0, ∂v/∂y > 0,

K
xpass
yact , ∂u/∂x < 0, ∂v/∂y > 0,

Kxact
ypass

, ∂u/∂x > 0, ∂v/∂y < 0,

K
xpass
ypass , ∂u/∂x < 0, ∂v/∂y < 0.

(7.2)

Kx and Ky are called the earth pressure coefficients. Elementary geometrical arguments
may be used to determine these values as functions of the internal and basal angles
of friction, Hutter et al. (1993),

Kx = 2 sec2 φ(1 ∓
√

1 − cos2 φ sec2 δ) − 1, Ky =
1

2
(Kx + 1 ∓

√
(Kx − 1)2 + 4 tan2 δ),

where Kx and Ky are active during dilatational motion (upper sign) and passive during
compressional motion (lower sign). Substituting for the normal pressure pzz from
(6.6a) into (7.1) and integrating through the avalanche depth, the depth-integrated
pressures in the downslope and cross-slope directions are, respectively, given by

hpxx = −Kxgzh
2/2 + O(εγ ), hpyy = −Kygzh

2/2 + O(εγ ). (7.3)

It is assumed that the velocity profiles are approximately uniform through the
avalanche depth (Boussinesq 1903 assumption), i.e. all sliding and little differential
shearing takes place:

u = ub + O(ε1+γ ), v = vb + O(ε1+γ ), uv = ubvb + O(ε1+γ ). (7.4)

These assumptions are supported by various measurements (Dent et al. 1998; Keller,
Ito & Nishimura 1998; McElwaine & Nishimura 2001; Eckart, Gray & Hutter 2003).

8. Model equations in conservative form
With the ordering of § 6 and the closure property and velocity approximation of

§ 7, the depth-integrated mass and momentum-balance equations (5.3), (5.6) and (5.7),
respectively, reduce to order ε1+γ to

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (8.1)

∂

∂t
(hu) +

∂

∂x
(hu2) +

∂

∂y
(huv) = hsx − ∂

∂x

(
βxh

2

2

)
, (8.2)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2) = hsy − ∂

∂y

(
βyh

2

2

)
, (8.3)
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where the superscript b is dropped. The factors βx and βy are defined as

βx = −εgzKx, βy = −εgzKy, (8.4)

respectively. The terms sx and sy represent the net driving accelerations in the
downslope and cross-slope directions, respectively, and are given by

sx = gx − u

|u| tan δ(−gz + λκηu2) + εgz

∂b

∂x
, (8.5)

sy = gy − v

|u| tan δ(−gz + λκηu2) + εgz

∂b

∂y
, (8.6)

where |u| =(u2 + v2)1/2 is the velocity field tangential to the reference (basal) topo-
graphy and η = cos(θ + ϕ(x) + ϕ0), ζ = sin(θ + ϕ(x) + ϕ0) and θ = y/(εzT ). The first
term on the right-hand sides of (8.5) and (8.6) is due to the gravitational
acceleration. The second term emerges from the dry Coulomb friction and incorpo-
rates the curvature and torsion effects of the bed, the third term is the projection of the
topographic variations along the normal direction. Also note that in applications and
numerical computations, it is convenient to take the sign of gz to be negative which
corresponds to the upward-pointing normal from the talweg. With this convention,
these model equations exactly reproduce the previous equations of Gray et al. (1999),
as a special case.

Given the master curve, C, the basal topography b, the material parameters δ and
φ, equations (8.1)–(8.3), which are written in non-dimensional form and constitute a
two-dimensional conservative system of hyperbolic equations, allow three independent
variables h, the avalanche geometry, u and v, depth-averaged bed-parallel velocity
components, to be computed as functions of time and space, once appropriate initial
and boundary conditions are prescribed.

9. Discussion, concluding remarks and outlook
The equations (8.1)–(8.3) are formally analogous, and identical, to those of previous

derivations under much simpler situations. For η = 1 and ζ =0, which correspond
to a large distance between the master curve and the talweg and a small azimuthal
angle in the cross-sectional plane, these equations reduce to those of Gray et al.
(1999) and Wieland et al. (1999). By varying the azimuthal angle and the distance
between the talweg and the master curve it is now possible to analyse the motion of
an avalanche in channels with different cross-slope curvatures and widths. Another
major advantage of these new model equations is that they include the effect of
torsion in the avalanche motion, which could not be achieved by previous models.
Therefore, the applicability of the present model equations is much broader than in
the previous cases. This has been achieved by use of a different underlying coordinate
system. Clearly, for different azimuthal angles the radial directions are not parallel; at
this point the present model deviates from previous ones. This implies that the earlier
equations of the (SH) model with torsion-free master curves are exactly reproduced
when these master curves are very distant. Similarly, whilst the downslope velocity
component in the entire cross-section is parallel to the local direction of the master
curve, the transverse velocity component follows concentric circles centred on the
master curve within the cross-sectional planes. The advantage of this formulation of
a depth-averaged avalanche model lies in its flexibility of application. The flow down
an inclined plane or within a channel with its axis in a vertical plane but which may
be curved can be described, as can the flow down mountain valleys with arbitrarily
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curved and twisted talwegs. It is this last application which has motivated us to derive
this model, because it is ideally suited to realistic situations in connection with the
use of Geographical Information and Visualisation Systems (GIVS).

The next goal should be to perform numerical simulations with the purpose of
providing general purpose software for practitioners involved in the prediction of
avalanche run-out in mountainous regions. The intention should be the use of the
Geographical Information Systems (GIS) from which digitized realistic topographies
in mountainous regions are available. With these GIS particular avalanche-prone
subregions can be selected and the reference master curve and the cross-sectional
topography constructed for individual sites. From a preselected release of a finite mass
of gravel or snow at a breaking zone the flow from initiation to run-out could then
be determined. This step requires numerical integration via avalanche purpose-built
software that incorporates a total-variation-diminishing non-oscillating scheme. Its
output could, in a final step, be used in visualization software to identify endangered
zones. A multitude of applications could then be investigated with the software.
Comparison with observational data in the field such as photographs from helicopters,
or a digital video camera positioned at a fixed station, may then become possible.

This paper is dedicated to Professor J. T. Jenkins on the occasion of his 60th
birthday. Financial support was provided by the Deutsche Forschungsgemeinschaft
through SFB 298: Deformation and failure of metallic and granular continua. We thank
three anonymous referees for their constructive criticisms and valuable suggestions.

Appendix. Components of gravitational acceleration
Consider the unit orthonormal basis vectors along the coordinate lines:

gx = T (x), gy = −ζ N(x) + ηB(x), gz = ηN(x) + ζ B(x). (A 1)

The gravitational vector g can be written in the form

g = (0, 0, −g) = 0i + 0 j − gk. (A 2)

We need to express g in terms of {gi} as follows:

g = gx gx + gy gy + gz gz = g[ĝxT + (−ζ ĝy + ηĝz)N + (ηĝy + ζ ĝz)B], (A 3)

where {gx, gy, gz} = g{ĝx, ĝy, ĝz} are the coordinates of g with respect to the basis
{gi}, see (4.1). Let (ti), (ni) and (bi) be the components of the tangent, normal and
binormal, respectively, of a given space curve with respect to the standard Cartesian
basis {i, j , k}. We can express the right-hand side of (A 3) in terms of this basis as
follows:

g = g[ĝx(t1 i + t2 j + t3k)+(−ζ ĝy +ηĝz)(n1 i +n2 j +n3k)+(ηĝy +ζ ĝz)(b1 i +b2 j +b3k)]

= g[ĝx t1 + Q1n1 + Q2b1]i + g[ĝx t2 + Q1n2 + Q2b2] j + g[ĝx t3 + Q1n3 + Q2b3]k,

where Q1 = (−ζ ĝy + ηĝz) and Q2 = (ηĝy + ζ ĝz). Comparing the like terms of this
equation with (A 2) and solving it we obtain

ĝx = (b1n2 − b2n1)/∆,

ĝy = (t2(n1η + b1ζ ) − t1(n2η + b2ζ ))/∆,

ĝz = (t1(b2η − n2ζ ) − t2(b1η − n1ζ ))/∆,

∆ = t1(n2b3 − b2n3) + t2(b1n3 − n1b3) + t3(n1b2 − b1n2).




(A 4)
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For notational brevity we will replace (ĝx, ĝy, ĝz) simply by (gx, gy, gz), so that gx, gy

and gz represent non-dimensional physical components of gravitational acceleration
along downslope, cross-slope and normal directions, respectively.
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